The Ooparts Collection


20th Century Dinosaurs

Dinosaurs in Literature, Art & History

Eyewitness Accounts

There Were Giants In The Earth in Those Days

Mega Fauna

Those Sophisticated "Cave Men"

Search for Noah's Ark

DNA, The Ultimate Oopart

The Bone Yards

Underwater Cities, Monuments?

Ancient Atomic Knowledge?

Salvation. What Must You Do To Be Saved?




A "Young" Saturn, Like Always, Like Never Before?

Creationists have long pointed to the rings of saturn as evidence of a young universe. The ago of the universe is currently pegged at 4.5 billion years, but the rings of saturn are obviously much, much younger.

Spectacular new photos of saturns rings indicate that their have been significant changes in the rings in just the last 25 years.

If the rings were billions of years old, we should expect the system to have reached equilibrium by now, but instead it is changing extremely rapidly, as one might expect from a "young" system.

One can't prove a young universe with this data. We can say that while the rapid changes might be "puzzling" to materialists, it is exactly what creationists might have expected.

The question is, is saturn a very young system still undergoing rapid changes, or do we just happen to be observing the "right" two hundred year window, out of 4.5 billion years?

Scientists Baffled by Changes in Saturn's Rings

By ALICIA CHANG, AP Science Writer
Monday, September 5, 2005

"This marvelous panoramic view was created by combining a total of 165 images taken by the Cassini wide-angle camera over nearly three hours on Sept. 15, 2006.

The full mosaic consists of three rows of nine wide-angle camera footprints; only a portion of the full mosaic is shown here. Color in the view was created by digitally compositing ultraviolet, infrared and clear filter images and was then adjusted to resemble natural color.

The mosaic images were acquired as the spacecraft drifted in the darkness of Saturn's shadow for about 12 hours, allowing a multitude of unique observations of the microscopic particles that compose Saturn's faint rings. Ring structures containing these tiny particles brighten substantially at high phase angles: i.e., viewing angles where the sun is almost directly behind the objects being imaged". ..JPL NASA

Click and Drag Photo to resize. .

New observations by the international Cassini spacecraft reveal that Saturn's trademark shimmering rings, which have dazzled astronomers since Galileo's time, have dramatically changed over the past 25 years.

Among the most surprising findings is that parts of Saturn's innermost ring — the D ring — have grown dimmer since the Voyager spacecraft flew by the planet in 1981. A piece of the D ring also has shifted, moving 125 miles inward toward Saturn.

While scientists puzzle over what caused Saturn's D ring to change in such a short period, the observations could tell something about the age and lifetime of planetary rings.

Scientists also are interested in Saturn and its magnificent rings because they are a model of the disk of gas and dust that initially surrounded the sun. Studying them could yield important clues about how the planets formed 4 1/2 billion years ago.

The D ring finding was among several Cassini-related discoveries announced Monday at a meeting of the American Astronomical Society's division of planetary sciences in Cambridge, England.

Scientists also unexpectedly found that ice particles that make up Saturn's main rings — the A, B, and C rings — were spinning slower than expected.

Scientists expected the denser A and B rings — where crowds of particles crash into one another like bumper cars — to rotate faster than the sparser C ring. The spin rates were determined by measuring the temperature of the particles.

"I don't think Saturn's rings will disappear anytime soon, but this tells us how the rings are evolving and how long they might last, " deputy project scientist Linda Spilker said in a telephone interview from England.

Ultraviolet imaging by the Cassini spacecraft also found that Saturn's outermost main ring — the A ring — appears to contain more empty space than originally thought. Scientists say ice particles in the ring are trapped in huge clumps of debris that are routinely broken apart and put back together by gravity.

Joshua Colwell, a science team member from the University of Colorado, Boulder, noted that the space between the clumps was greater than the size of the clumps themselves, suggesting that there were few particles between clumps. The ring observations were made this summer when the Cassini spacecraft had a prime viewing angle of the planet from orbit.

The $3.3 billion Cassini mission, funded by NASA and the European and Italian space agencies, was launched in 1997 and took seven years to reach Saturn to explore the ringed planet and its many moons.

Cassini is managed by NASA's Jet Propulsion Laboratory in Pasadena.

Snowball Fight in Saturn's Rings

By Michael Schirber, Staff Writer

The rings of Saturn are part of a young and evolving system, according to the latest observations that suggest a snowball fight is going on around the giant planet.

Portions of the rings, which are predominantly made of ice, may be only 10 to 100 million years old, which is a brief period of time compared to the four and a half billion-year-old solar system.

Data from the Ultraviolet Imaging Spectrometer (UVIS) on the Cassini space probe show fluctuations in the amount of neutral gas surrounding the planet. In one instance, oxygen levels increased by about 50 percent in a region around the outermost E ring. Scientists aren't sure what's going on.

"A possible explanation for the fluctuation in oxygen is that small, unseen icy moons have been colliding with Saturn's E ring," said Larry Esposito from the University of Colorado, Boulder.

These smaller satellites can't be seen with current technology, but astronomers assume they are there from the distribution of larger moons and other recent Cassini data that have suggested the presence of unseen moons influencing the shape of the rings.

Astronomers have long assumed Saturn's rings are composed of various-sized objects, from tiny frozen grains to mountain-sized chunks of ice and rock.

The smashing of giant snowballs produces small grains of ice, the thinking goes. The increased surface area speeds up a process by which plasma particles -- essentially superheated gas -- zip along Saturn’s magnetic field strip oxygen atoms from the ice.

Besides helping release oxygen, though, the break up of these icy moons may also explain how the rings maintain their youthful appearance.

Ring Eating

On Cassini’s approach to Saturn, the UVIS detector imaged a large cloud of neutral oxygen in the shape of a doughnut, or torus, ringing the planet.

Extending from three to eight times the radius of Saturn, the cloud approximately overlaps the E ring, but it is much wider – puffing out of the plane by a distance of two Saturn radii. The radius of Saturn is about 36,000 miles (58,000 kilometers).

The oxygen atoms in the torus absorb solar radiation and re-emit light in the ultraviolet part of the spectrum. Fluctuations in reemitted light are due to changes in the number of oxygen atoms.

A large peak in the number of oxygen atoms was observed around February 2003. The implication is that the plasma stripped away about a billion pounds (500 million kilograms) of oxygen from the outermost E ring over a two-month period.

"Presumably, what is happening is the plasma system is eating the rings," said Donald Shemansky from the University of Southern California. "It does this by eroding water from the grains."

Shemasky explained – in a telephone interview with – that the plasma particles can only penetrate a short distance into the ice, so the erosion rate increases with surface area. A chunk of material has more surface area when it is broken into smaller fragments.

The large fluctuation seen in the oxygen data presumably followed the breakup of a big chunk of ice – either from a collision with another icy moon or an impact from a meteorite.

Shemansky and his colleagues have estimated from the loss rate of oxygen that the entire mass in the outermost E ring would disappear in a matter of 100 million years – if there were nothing to replenish it.

"There has to be regeneration," said Shemansky. "Otherwise, [the rings] would drop dead on us."


The same process that may be exposing the ice to the plasma may also be rejuvenating the rings. Evidence for this comes from the beautiful bands of colors in the rings.

The colors are thought to be due to "pollution." When a meteor crashes into Saturn, it can deposit some of its material in the rings. Lower density bands in the rings would get dirtier faster, and the more gunk on the ice, the darker the band will be.

But because the meteor dirt would spread out over time, this mechanism cannot explain how thin the color bands are – unless clean ice is added to the rings from time to time.

"The evidence indicates that in the last 10 million to 100 million years, fresh material probably was added to the ring system," said Esposito, the lead author of an article Dec. 16 in the online version of the journal Science. The interiors of moonlets would be uncontaminated by the incessant meteor bombardment.

The researchers, therefore, explain the brightness of the A ring by postulating the relatively recent demise of a moon with a radius of about 12 miles (20 kilometers).

"Both the oxygen fluctuation and the spectral variation in Saturn's rings support a model of ring history in which small moons are continually destroyed to produce new rings," Esposito said.

In the midst of it

According to Shemansky, the moon-smashing idea is still speculative. There are other processes that might be involved, like volcanoes on Saturn’s larger moons spewing out slushy material.

His team is continuing to monitor the oxygen around Saturn, but now from much closer – since Cassini is now in orbit around the planet.

"We are in the midst of it," he said, referring to the oxygen torus.

From this vantage point, they hope to be able to map out the three dimensional structure of the neutral gas. They also want to determine how often the oxygen level fluctuates. "Hopefully, we’ll see more events," Shemansky said. "We only have one right now."