20th Century Dinosaurs... Page  40
20th Century Dinosaurs... Page 40

"Well Designed"? Pterosaur Correlation to Russian SU-37 BERKUT

by Cliff Paiva, M.S.


"The flight dynamics sections confirms that the pterosaur is an exceedingly effective aerodynamic drag-reduced system, using forward swept wing technologies.

Maximum lift forces occur in the midsection of the animal’s wing surface area. Camber is correlated, along with the swept wing technology, to the Russian SU-37/47 (NATO Designation: BERKUT) all aspect, all weather advanced, stealth fighter.

The SU37/47 Russian fighter also utilizes extremely highly maneuverable flight control surfaces which is in direct correlation to the pterosaur’s pteroid section, extended camber forward flap and the aft variable wing-leg sections.

Both “fighters” function in 6 degrees-of-freedom (6-DOF) turning in any axis (x,y,z) and any angle (ρ,θ,φ) simultaneously. Each leg is capable of independent adjustment in direct correlation to the SU-37/47’s rear, independent horizontal stabilization system.

When used in conjunction with the pteroid-camber section the pterosaur is capable of severe angles-of-attack on approach-to-target and in mid-flight operations. Like the SU-37/47 Russian system, and the American F-22 Advanced Stealth Fighter, the pterosaur is then fully capable of applying totally independent, variable control surfaces.

Also the head crest is the animal’s advanced rudder-optics section and, like the rest of this advanced “bird-of-prey”, operates independently or in coupled fashion, as the mission requires, with the rest of the sophisticated control surfaces distributed throughout the advanced engineered system.

Lift Force Assessment as a function of velocity.

A pterosaur in level flight (or power dive) is able to displace an order of magnitude its own weight. A log-log curve was generated by Olin College engineers to assess displacement characteristics.

Lift force is a function of 1/2 p v 2 CLa. Power dives would generate significantly increased velocities which may account for observations of the animal’s ability to carry in excess of one hundred pounds.

Nominal and maximum lift forces are conservative approximations.

This pterosaur wing surface membrane is designed to provide maximum displacement with the use of aero-fibrils.

This design implementation is similar to current manufactured modern sail-making methodologies Stanford University's dynamic similitude project made it clear that the aero (actino) fibrils significantly altered the tension and directional stiffness of the membrane in flight.

Along with the pteroid bone it is suggested that aero-fibrils have a important function in camber (forward flap) control.

Blog Comments on the Aforementioned

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 26, 27, 28, 29, 30, 31

Please Support the Research of!

Since 2002, Chris Parker has done the majority of the research and writing of articles for If this site has been an encouragement to you, please donate to support Chris's ongoing research. ( is not incorporated and your donations may not be tax deductable.)

More Posts About 20th Century Dinosaurs

20th Century Dinosaurs... Page  22
20th Century Dinosaurs... Page  17
20th Century Dinosaurs... Page  33
20th Century Dinosaurs... Page  10
20th Century Dinosaurs... Page  37
20th Century Dinosaurs... Page 5
20th Century Dinosaurs... Page  44
October 2003 Pterosaur Sighting?
20th Century Dinosaurs... Page  27
Fossil Dinosaur Prints Together with Human Prints
20th Century Dinosaurs... Page  16
20th Century Dinosaurs... Page  38
20th Century Dinosaurs... Page  13
20th Century Dinosaurs... Page  23
20th Century Dinosaurs... Page 4
20th Century Dinosaurs... Page  15
20th Century Dinosaurs... Page  10
20th Century Dinosaurs... Page  20