Archive for May 29th, 2007

The Surprising “Truth” Behind the Construction of the Great Pyramids, Science, Sophistication of Ancestors, Uncategorized, Unexplained Artifact | Posted by Chris Parker
May 29 2007

Question. What is “high technology”? Take the “London hammer” for instance. It’s justテつa hammer, so can a hammer represent high technology? This particular hammer is encased in solid rock which according to science makes it over 140 million years old. Its handle is partially coalified and partially petrified, processes that would also make it over 100 million years old,–according to geologists.

The metal does not rust and it made up of almost pure iron (97%) with traces of chorine. Our modern means of making “iron” leaves impurities not found in this hammer andテつwe also cannot make a useful hammer with that high a precentage of iron. No one knows who made the hammer nor the technology used to make it. But can a simple hammer be “high tech”?

The reason we ask is that the article following poses yet another theory concerning the construction of the great pyramids. The authors purport to solve the mystery of how primitive men built a concise 40 story building of more than 2,000,000 separate blocks weighing a minimum of two tons each. Assuming weテつcould duplicate the pyramid construction today, could anything be considered low tech if it took men 4,500 years or more to be able to duplicate it?

Here, they theorize that the large blocks were cast out of a limestone concrete so sublime that it was virtually impossible for sceince to distinguish it from natural limestone over all these years of study. This concrete apparently utilized nanotechnology in a process that manufacturers today would like to utilize.

So, the question is, did they actually solveテつa mystery–or heighten it? How did ancient men discover how to make this type of cement? How did they learnテつ how to incorporate nanotechnology?…

“Nanotechnology is a field of applied science and technology covering a broad range of topics. The main unifying theme is the control of matter on a scale smaller than 1 micrometre, normally between 1-100 nanometers, as well as the fabrication of devices on this same length scale.” Wiipedia


The Surprising Truth Behind the Construction of the Great Pyramids

By Sheila Berninger, and Dorilona Rose, National Science Foundation

“This is not my day job.” So begins Michel Barsoum as he recounts his foray into the mysteries of the Great Pyramids of Egypt. As a well respected researcher in the field of ceramics, Barsoum never expected his career to take him down a path of history, archaeology, and “political” science, with materials research mixed in.

As a distinguished professor in the Department of Materials Science and Engineering at Drexel University, his daily routine consists mainly of teaching students about ceramics, or performing research on a new class of materials, the so-called MAX Phases, that he and his colleagues discovered in the 1990s. These modern ceramics are machinable, thermal-shock resistant, and are better conductors of heat and electricity than many metals-making them potential candidates for use in nuclear power plants, the automotive industry, jet engines, and a range of other high-demand systems.

Then Barsoum received an unexpected phone call from Michael Carrell, a friend of a retired colleague of Barsoum, who called to chat with the Egyptian-born Barsoum about how much he knew of the mysteries surrounding the building of the Great Pyramids of Giza, the only remaining of the seven wonders of the ancient world.

The widely accepted theory-that the pyramids were crafted of carved-out giant limestone blocks that workers carried up ramps-had not only not been embraced by everyone, but as important had quite a number of holes.

Burst out laughing

According to the caller, the mysteries had actually been solved by Joseph Davidovits, Director of the Geopolymer Institute in St. Quentin, France, more than two decades ago. Davidovits claimed that the stones of the pyramids were actually made of a very early form of concrete created using a mixture of limestone, clay, lime, and water.

“It was at this point in the conversation that I burst out laughing,” says Barsoum. If the pyramids were indeed cast, he says, someone should have proven it beyond a doubt by now, in this day and age, with just a few hours of electron microscopy.

It turned out that nobody had completely proven the theory…yet.

“What started as a two-hour project turned into a five-year odyssey that I undertook with one of my graduate students, Adrish Ganguly, and a colleague in France, Gilles Hug,” Barsoum says.

A year and a half later, after extensive scanning electron microscope (SEM) observations and other testing, Barsoum and his research group finally began to draw some conclusions about the pyramids. They found that the tiniest structures within the inner and outer casing stones were indeed consistent with a reconstituted limestone. The cement binding the limestone aggregate was either silicon dioxide (the building block of quartz) or a calcium and magnesium-rich silicate mineral.

The stones also had a high water content-unusual for the normally dry, natural limestone found on the Giza plateau-and the cementing phases, in both the inner and outer casing stones, were amorphous, in other words, their atoms were not arranged in a regular and periodic array. Sedimentary rocks such as limestone are seldom, if ever, amorphous.

The sample chemistries the researchers found do not exist anywhere in nature. “Therefore,” says Barsoum, “it’s very improbable that the outer and inner casing stones that we examined were chiseled from a natural limestone block.”

More startlingly, Barsoum and another of his graduate students, Aaron Sakulich, recently discovered the presence of silicon dioxide nanoscale spheres (with diameters only billionths of a meter across) in one of the samples. This discovery further confirms that these blocks are not natural limestone.

Generations misled

At the end of their most recent paper reporting these findings, the researchers reflect that it is “ironic, sublime and truly humbling” that this 4,500-year-old limestone is so true to the original that it has misled generations of Egyptologists and geologists and, “because the ancient Egyptians were the original-albeit unknowing-nanotechnologists.”

As if the scientific evidence isn’t enough, Barsoum has pointed out a number of common sense reasons why the pyramids were not likely constructed entirely of chiseled limestone blocks.

Egyptologists are consistently confronted by unanswered questions: How is it possible that some of the blocks are so perfectly matched that not even a human hair can be inserted between them? Why, despite the existence of millions of tons of stone, carved presumably with copper chisels, has not one copper chisel ever been found on the Giza Plateau?

Although Barsoum’s research has not answered all of these questions, his work provides insight into some of the key questions. For example, it is now more likely than not that the tops of the pyramids are cast, as it would have been increasingly difficult to drag the stones to the summit.

Also, casting would explain why some of the stones fit so closely together. Still, as with all great mysteries, not every aspect of the pyramids can be explained. How the Egyptians hoisted 70-ton granite slabs halfway up the great pyramid remains as mysterious as ever.

Why do the results of Barsoum’s research matter most today? Two words: earth cements.

“How energy intensive and/or complicated can a 4,500 year old technology really be? The answer to both questions is not very,” Barsoum explains. “The basic raw materials used for this early form of concrete-limestone, lime, and diatomaceous earth-can be found virtually anywhere in the world,” he adds. “Replicating this method of construction would be cost effective, long lasting, and much more environmentally friendly than the current building material of choice: Portland cement that alone pumps roughly 6 billion tons of CO2 annually into the atmosphere when it’s manufactured.”

“Ironically,” says Barsoum, “this study of 4,500 year old rocks is not about the past, but about the future.”